Multiple positive solutions of singular and critical elliptic problem in $${\mathbb{R}^2}$$ with discontinuous nonlinearities
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for Singular Elliptic Equations with Concave-Convex Nonlinearities and Sign-Changing Weights
Recommended by Pavel Drabek We study existence and multiplicity of positive solutions for the following Dirichlet equations: −Δu − μ/|x| 2 u λfx|u| q−2 u gx|u| 2 * −2 u in Ω, u 0 on ∂Ω, where 0 ∈ Ω ⊂ R N N ≥ 3 is a bounded domain with smooth boundary ∂Ω, λ > 0, 0 ≤ μ < μ N − 2 2 /4, 2 * 2N/N − 2, 1 ≤ q < 2, and f, g are continuous functions on Ω which are somewhere positive but which may change...
متن کاملQuasilinear Elliptic Problems with Critical Exponents and Discontinuous Nonlinearities
Using a recent fixed point theorem in ordered Banach spaces by S. Carl and S. Heikkilä, we study the existence of weak solutions to nonlinear elliptic problems −diva(x,∇u) = f (x,u) in a bounded domain Ω ⊂ Rn with Dirichlet boundary condition. In particular, we prove that for some suitable function g , which may be discontinuous, and δ small enough, the p -Laplace equation −div(|∇u|p−2∇u) = |u|...
متن کاملExistence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent
and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...
متن کاملMultiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds
In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.
متن کاملPositive radial solutions of a singular elliptic equation with sign changing nonlinearities
We study the existence of positive radial solutions to the singular semilinear elliptic equation {−∆u = f (x, u) , in B u = 0, x ∈ ∂B. Throughout, our nonlinearity is allowed to change sign. The singularity may occur at u = 0 and |x | = 1. © 2005 Elsevier Ltd. All rights reserved. MSC: 34B15; 35J20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2013
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-013-0232-3